Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 429
Filtrar
1.
Genome Med ; 16(1): 59, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643166

RESUMO

BACKGROUND: Gut dysbiosis has been linked with both HIV infection and diabetes, but its interplay with metabolic and inflammatory responses in diabetes, particularly in the context of HIV infection, remains unclear. METHODS: We first conducted a cross-sectional association analysis to characterize the gut microbial, circulating metabolite, and immune/inflammatory protein features associated with diabetes in up to 493 women (~ 146 with prevalent diabetes with 69.9% HIV +) of the Women's Interagency HIV Study. Prospective analyses were then conducted to determine associations of identified metabolites with incident diabetes over 12 years of follow-up in 694 participants (391 women from WIHS and 303 men from the Multicenter AIDS Cohort Study; 166 incident cases were recorded) with and without HIV infection. Mediation analyses were conducted to explore whether gut bacteria-diabetes associations are explained by altered metabolites and proteins. RESULTS: Seven gut bacterial genera were identified to be associated with diabetes (FDR-q < 0.1), with positive associations for Shigella, Escherichia, Megasphaera, and Lactobacillus, and inverse associations for Adlercreutzia, Ruminococcus, and Intestinibacter. Importantly, the associations of most species, especially Adlercreutzia and Ruminococcus, were largely independent of antidiabetic medications use. Meanwhile, 18 proteins and 76 metabolites, including 3 microbially derived metabolites (trimethylamine N-oxide, phenylacetylglutamine (PAGln), imidazolepropionic acid (IMP)), 50 lipids (e.g., diradylglycerols (DGs) and triradylglycerols (TGs)) and 23 non-lipid metabolites, were associated with diabetes (FDR-q < 0.1), with the majority showing positive associations and more than half of them (59/76) associated with incident diabetes. In mediation analyses, several proteins, especially interleukin-18 receptor 1 and osteoprotegerin, IMP and PAGln partially mediate the observed bacterial genera-diabetes associations, particularly for those of Adlercreutzia and Escherichia. Many diabetes-associated metabolites and proteins were altered in HIV, but no effect modification on their associations with diabetes was observed by HIV. CONCLUSION: Among individuals with and without HIV, multiple gut bacterial genera, blood metabolites, and proinflammatory proteins were associated with diabetes. The observed mediated effects by metabolites and proteins in genera-diabetes associations highlighted the potential involvement of inflammatory and metabolic perturbations in the link between gut dysbiosis and diabetes in the context of HIV infection.


Assuntos
Diabetes Mellitus , Infecções por HIV , Masculino , Humanos , Feminino , Infecções por HIV/tratamento farmacológico , Estudos Prospectivos , Estudos de Coortes , Disbiose/complicações , Estudos Transversais , Bactérias
2.
Stroke ; 55(5): 1370-1380, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38572656

RESUMO

BACKGROUND: Mild chemical inhibition of mitochondrial respiration can confer resilience against a subsequent stroke or myocardial infarction, also known as preconditioning. However, the lack of chemicals that can safely inhibit mitochondrial respiration has impeded the clinical translation of the preconditioning concept. We previously showed that meclizine, an over-the-counter antivertigo drug, can toggle metabolism from mitochondrial respiration toward glycolysis and protect against ischemia-reperfusion injury in the brain, heart, and kidney. Here, we examine the mechanism of action of meclizine and report the efficacy and improved safety of the (S) enantiomer. METHODS: We determined the anoxic depolarization latency, tissue and neurological outcomes, and glucose uptake using micro-positron emission tomography after transient middle cerebral artery occlusion in mice pretreated (-17 and -3 hours) with either vehicle or meclizine. To exclude a direct effect on tissue excitability, we also examined spreading depression susceptibility. Furthermore, we accomplished the chiral synthesis of (R)- and (S)-meclizine and compared their effects on oxygen consumption and histamine H1 receptor binding along with their brain concentrations. RESULTS: Micro-positron emission tomography showed meclizine increases glucose uptake in the ischemic penumbra, providing the first in vivo evidence that the neuroprotective effect of meclizine indeed stems from its ability to toggle metabolism toward glycolysis. Consistent with reduced reliance on oxidative phosphorylation to sustain the metabolism, meclizine delayed anoxic depolarization onset after middle cerebral artery occlusion. Moreover, the (S) enantiomer showed reduced H1 receptor binding, a dose-limiting side effect for the racemate, but retained its effect on mitochondrial respiration. (S)-meclizine was at least as efficacious as the racemate in delaying anoxic depolarization onset and decreasing infarct volumes after middle cerebral artery occlusion. CONCLUSIONS: Our data identify (S)-meclizine as a promising new drug candidate with high translational potential as a chemical preconditioning agent for preemptive prophylaxis in patients with high imminent stroke or myocardial infarction risk.

3.
medRxiv ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38645000

RESUMO

The emerging field of precision nutrition is based on the notion that inter-individual responses across diets of different calorie-macronutrient content may contribute to inter-individual differences in metabolism, adiposity, and weight gain. Free-living diet studies have been traditionally challenged by difficulties in controlling adherence to prescribed calories and macronutrient content and rarely allow a period of metabolic stability prior to metabolic measures (to minimize influences of weight changes). In this context, key physiologic measures central to precision nutrition responses may be most precisely quantified via whole room indirect calorimetry over 24-h, in which precise control of activity and nutrition can be achieved. In addition, these studies represent unique "N of 1" human crossover metabolic-physiologic experiments during which specific molecular pathways central to nutrient metabolism may be discerned. Here, we quantified 263 circulating metabolites during a ≈40-day inpatient admission in which up to 94 participants underwent seven monitored 24-h nutritional interventions of differing macronutrient composition in a whole-room indirect calorimeter to capture precision metabolic responses. Broadly, we observed heterogenous responses in metabolites across dietary chambers, with the exception of carnitines which tracked with 24-h respiratory quotient. We identified excursions in shared metabolic species (e.g., carnitines, glycerophospholipids, amino acids) that mapped onto gold-standard calorimetric measures of substrate oxidation preference and lipid availability. These findings support a coordinated metabolic-physiologic response to nutrition, highlighting the relevance of these controlled settings to uncover biological pathways of energy utilization during precision nutrition studies.

4.
Sci Rep ; 14(1): 8427, 2024 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600145

RESUMO

Impaired physical function contributes to falls, fractures, and mortality among patients undergoing dialysis. Using a metabolomic approach, we identified metabolite alterations and effect size-based composite scores for constructs of impaired gait speed and grip strength. 108 participants incident to dialysis had targeted plasma metabolomics via liquid chromatography-mass spectrometry and physical function assessed (i.e., 4 m walk, handgrip strength). Physical function measures were categorized as above/ below median, with grip utilizing sex-based medians. To develop composite scores, metabolites were identified via Wilcoxon uncorrected p < 0.05 and effect size > 0.40. Receiver operating characteristic analyses tested whether scores differentiated between above/below function groups. Participants were 54% male, 77% Black and 53 ± 14 y with dialysis vintage of 101 ± 50 days. Median (IQR) grip strength was 35.5 (11.1) kg (males) and 20 (8.4) kg (females); median gait speed was 0.82 (0.34) m/s. Of 246 measured metabolites, composite scores were composed of 22 and 12 metabolites for grip strength and gait speed, respectively. Area under the curve for metabolite composite was 0.88 (gait) and 0.911 (grip). Composite scores of physical function performed better than clinical parameters alone in patients on dialysis. These results provide potential pathways for interventions and needed validation in an independent cohort.


Assuntos
Força da Mão , Diálise Renal , Feminino , Humanos , Masculino , Marcha , Caminhada , Velocidade de Caminhada
5.
Cell ; 187(8): 1834-1852.e19, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38569543

RESUMO

Accumulating evidence suggests that cardiovascular disease (CVD) is associated with an altered gut microbiome. Our understanding of the underlying mechanisms has been hindered by lack of matched multi-omic data with diagnostic biomarkers. To comprehensively profile gut microbiome contributions to CVD, we generated stool metagenomics and metabolomics from 1,429 Framingham Heart Study participants. We identified blood lipids and cardiovascular health measurements associated with microbiome and metabolome composition. Integrated analysis revealed microbial pathways implicated in CVD, including flavonoid, γ-butyrobetaine, and cholesterol metabolism. Species from the Oscillibacter genus were associated with decreased fecal and plasma cholesterol levels. Using functional prediction and in vitro characterization of multiple representative human gut Oscillibacter isolates, we uncovered conserved cholesterol-metabolizing capabilities, including glycosylation and dehydrogenation. These findings suggest that cholesterol metabolism is a broad property of phylogenetically diverse Oscillibacter spp., with potential benefits for lipid homeostasis and cardiovascular health.


Assuntos
Bactérias , Doenças Cardiovasculares , Colesterol , Microbioma Gastrointestinal , Humanos , Bactérias/metabolismo , Doenças Cardiovasculares/metabolismo , Colesterol/análise , Colesterol/sangue , Colesterol/metabolismo , Fezes/química , Estudos Longitudinais , Metaboloma , Metabolômica , RNA Ribossômico 16S/metabolismo
6.
J Neurovirol ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472641

RESUMO

Sleep disturbances are prevalent in women with HIV (WWH). Tryptophan-kynurenine (T-K) pathway metabolites are associated with alterations in actigraphy derived sleep measures in WWH, although may not always correlate with functional impairment. We investigated the relationship between T-K pathway metabolites and self-reported daytime dysfunction in WWH and women without HIV (WWoH). 141 WWH on stable antiretroviral therapy and 140 demographically similar WWoH enrolled in the IDOze Study had targeted plasma T-K metabolites measured using liquid chromatography-tandem mass spectrometry. We utilized the daytime dysfunction component of the Pittsburgh Sleep Quality Index (PSQI) to assess functional impairment across HIV-serostatus. Lower levels of 5-hydroxytryptophan and serotonin were associated with greater daytime dysfunction in all women. In WWH, daytime dysfunction was associated with increased kynurenic acid (R = 0.26, p < 0.05), and kynurenic acid-tryptophan (KA-T) ratio (R = 0.28, p < 0.01). WWH with daytime dysfunction had a 0.7 log fold increase in kynurenic acid compared to WWH without daytime dysfunction. Kynurenic acid levels and the KA-T ratio were associated with daytime dysfunction in WWH but not in WWoH. Longitudinal studies are needed to establish a causal relationship and directionality between T-K metabolic changes and sleep impairment in WWH.

7.
Am J Clin Nutr ; 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38428742

RESUMO

BACKGROUND: The health benefits of the Mediterranean diet (MedDiet) have been linked to the presence of beneficial gut microbes and related metabolites. However, its impact on the fecal metabolome remains poorly understood. OBJECTIVES: Our goal was to investigate the weight-loss effects of a 1-y lifestyle intervention based on an energy-reduced MedDiet coupled with physical activity (intervention group), compared with an ad libitum MedDiet (control group), on fecal metabolites, fecal microbiota, and their potential association with cardiovascular disease risk factors. METHODS: A total of 400 participants (200 from each study group), aged 55-75 y, and at high cardiovascular disease risk, were included. Dietary and lifestyle information, anthropometric measurements, blood biochemical parameters, and stool samples were collected at baseline and after 1 y of follow-up. Liquid chromatography-tandem mass spectrometry was used to profile endogenous fecal metabolites, and 16S amplicon sequencing was employed to profile the fecal microbiota. RESULTS: Compared with the control group, the intervention group exhibited greater weight loss and improvement in various cardiovascular disease risk factors. We identified intervention effects on 4 stool metabolites and subnetworks primarily composed of bile acids, ceramides, and sphingosines, fatty acids, carnitines, nucleotides, and metabolites of purine and the Krebs cycle. Some of these were associated with changes in several cardiovascular disease risk factors. In addition, we observed a reduction in the abundance of the genera Eubacterium hallii group and Dorea, and an increase in alpha diversity in the intervention group after 1 y of follow-up. Changes in the intervention-related microbiota profiles were also associated with alterations in different fecal metabolite subnetworks and some cardiovascular disease risk factors. CONCLUSIONS: An intervention based on an energy-reduced MedDiet and physical activity promotion, compared with an ad libitum MedDiet, was associated with improvements in cardiometabolic risk factors, potentially through modulation of the fecal microbiota and metabolome. This trial was registered at https://www.isrctn.com/ as ISRCTN89898870 (https://doi.org/10.1186/ISRCTN89898870).

8.
Nat Metab ; 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499766

RESUMO

Metformin is a widely prescribed anti-diabetic medicine that also reduces body weight. There is ongoing debate about the mechanisms that mediate metformin's effects on energy balance. Here, we show that metformin is a powerful pharmacological inducer of the anorexigenic metabolite N-lactoyl-phenylalanine (Lac-Phe) in cells, in mice and two independent human cohorts. Metformin drives Lac-Phe biosynthesis through the inhibition of complex I, increased glycolytic flux and intracellular lactate mass action. Intestinal epithelial CNDP2+ cells, not macrophages, are the principal in vivo source of basal and metformin-inducible Lac-Phe. Genetic ablation of Lac-Phe biosynthesis in male mice renders animals resistant to the effects of metformin on food intake and body weight. Lastly, mediation analyses support a role for Lac-Phe as a downstream effector of metformin's effects on body mass index in participants of a large population-based observational cohort, the Multi-Ethnic Study of Atherosclerosis. Together, these data establish Lac-Phe as a critical mediator of the body weight-lowering effects of metformin.

9.
EBioMedicine ; 102: 105025, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38458111

RESUMO

BACKGROUND: Lung function trajectories (LFTs) have been shown to be an important measure of long-term health in asthma. While there is a growing body of metabolomic studies on asthma status and other phenotypes, there are no prospective studies of the relationship between metabolomics and LFTs or their genomic determinants. METHODS: We utilized ordinal logistic regression to identify plasma metabolite principal components associated with four previously-published LFTs in children from the Childhood Asthma Management Program (CAMP) (n = 660). The top significant metabolite principal component (PCLF) was evaluated in an independent cross-sectional child cohort, the Genetic Epidemiology of Asthma in Costa Rica Study (GACRS) (n = 1151) and evaluated for association with spirometric measures. Using meta-analysis of CAMP and GACRS, we identified associations between PCLF and microRNA, and SNPs in their target genes. Statistical significance was determined using an false discovery rate-adjusted Q-value. FINDINGS: The top metabolite principal component, PCLF, was significantly associated with better LFTs after multiple-testing correction (Q-value = 0.03). PCLF is composed of the urea cycle, caffeine, corticosteroid, carnitine, and potential microbial (secondary bile acid, tryptophan, linoleate, histidine metabolism) metabolites. Higher levels of PCLF were also associated with increases in lung function measures and decreased circulating neutrophil percentage in both CAMP and GACRS. PCLF was also significantly associated with microRNA miR-143-3p, and SNPs in three miR-143-3p target genes; CCZ1 (P-value = 2.6 × 10-5), SLC8A1 (P-value = 3.9 × 10-5); and TENM4 (P-value = 4.9 × 10-5). INTERPRETATION: This study reveals associations between metabolites, miR-143-3p and LFTs in children with asthma, offering insights into asthma physiology and possible interventions to enhance lung function and long-term health. FUNDING: Molecular data for CAMP and GACRS via the Trans-Omics in Precision Medicine (TOPMed) program was supported by the National Heart, Lung, and Blood Institute (NHLBI).


Assuntos
Asma , MicroRNAs , Criança , Humanos , Estudos Transversais , Pulmão/metabolismo , MicroRNAs/metabolismo , Metabolômica
10.
Elife ; 122024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38517750

RESUMO

Partial reprogramming by cyclic short-term expression of Yamanaka factors holds promise for shifting cells to younger states and consequently delaying the onset of many diseases of aging. However, the delivery of transgenes and potential risk of teratoma formation present challenges for in vivo applications. Recent advances include the use of cocktails of compounds to reprogram somatic cells, but the characteristics and mechanisms of partial cellular reprogramming by chemicals remain unclear. Here, we report a multi-omics characterization of partial chemical reprogramming in fibroblasts from young and aged mice. We measured the effects of partial chemical reprogramming on the epigenome, transcriptome, proteome, phosphoproteome, and metabolome. At the transcriptome, proteome, and phosphoproteome levels, we saw widescale changes induced by this treatment, with the most notable signature being an upregulation of mitochondrial oxidative phosphorylation. Furthermore, at the metabolome level, we observed a reduction in the accumulation of aging-related metabolites. Using both transcriptomic and epigenetic clock-based analyses, we show that partial chemical reprogramming reduces the biological age of mouse fibroblasts. We demonstrate that these changes have functional impacts, as evidenced by changes in cellular respiration and mitochondrial membrane potential. Taken together, these results illuminate the potential for chemical reprogramming reagents to rejuvenate aged biological systems and warrant further investigation into adapting these approaches for in vivo age reversal.


Assuntos
Células-Tronco Pluripotentes Induzidas , Rejuvenescimento , Animais , Camundongos , Rejuvenescimento/fisiologia , Proteoma/metabolismo , Multiômica , Reprogramação Celular/genética , Envelhecimento/fisiologia , Células-Tronco Pluripotentes Induzidas/metabolismo
11.
Mol Syst Biol ; 20(4): 338-361, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38467837

RESUMO

Microbial biochemistry is central to the pathophysiology of inflammatory bowel diseases (IBD). Improved knowledge of microbial metabolites and their immunomodulatory roles is thus necessary for diagnosis and management. Here, we systematically analyzed the chemical, ecological, and epidemiological properties of ~82k metabolic features in 546 Integrative Human Microbiome Project (iHMP/HMP2) metabolomes, using a newly developed methodology for bioactive compound prioritization from microbial communities. This suggested >1000 metabolic features as potentially bioactive in IBD and associated ~43% of prevalent, unannotated features with at least one well-characterized metabolite, thereby providing initial information for further characterization of a significant portion of the fecal metabolome. Prioritized features included known IBD-linked chemical families such as bile acids and short-chain fatty acids, and less-explored bilirubin, polyamine, and vitamin derivatives, and other microbial products. One of these, nicotinamide riboside, reduced colitis scores in DSS-treated mice. The method, MACARRoN, is generalizable with the potential to improve microbial community characterization and provide therapeutic candidates.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Humanos , Animais , Camundongos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/metabolismo , Metaboloma , Ácidos e Sais Biliares
12.
Food Chem ; 446: 138744, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38432131

RESUMO

This study introduces a multidisciplinary approach to investigate bioactive food metabolites often overlooked due to their low concentrations. We integrated an in-house food metabolite library (n = 494), a human metabolite library (n = 891) from epidemiological studies, and metabolite pharmacological databases to screen for food metabolites with potential bioactivity. We identified six potential metabolites, including meglutol (3-hydroxy-3-methylglutarate), an understudied low-density lipoprotein (LDL)-lowering compound. We further focused on meglutol as a case study to showcase the range of characterizations achievable with this approach. Green pea tempe was identified to contain the highest meglutol concentration (21.8 ± 4.6 mg/100 g). Furthermore, we identified a significant cross-sectional association between plasma meglutol (per 1-standard deviation) and lower LDL cholesterol in two Hispanic adult cohorts (n = 1,628) (ß [standard error]: -5.5 (1.6) mg/dl, P = 0.0005). These findings highlight how multidisciplinary metabolomics can serve as a systematic tool for discovering and enhancing bioactive metabolites in food, such as meglutol, with potential applications in personalized dietary approaches for disease prevention.


Assuntos
Meglutol , Alimentos de Soja , Humanos , Meglutol/metabolismo , Meglutol/farmacologia , Estudos Transversais , Indonésia , Metabolômica
13.
Artigo em Inglês | MEDLINE | ID: mdl-38484838

RESUMO

BACKGROUND: Previous studies have linked prenatal acetaminophen use to increased asthma risk in children. However, none have explored this association while differentiating between asthma cases with and without other allergic conditions or by employing objective biomarkers to assess acetaminophen exposure. OBJECTIVE: To evaluate whether the detection of acetaminophen biomarkers in cord blood is associated with the subgroups of asthma both with and without allergic comorbidities in children. METHODS: Acetaminophen biomarkers, including unchanged acetaminophen and acetaminophen glucuronide, were measured in neonatal cord blood samples from the Boston Birth Cohort. Asthma subgroups were defined on the basis of physician diagnoses of asthma and other allergic conditions (atopic dermatitis and allergic rhinitis). Multinomial regressions were used to evaluate the associations between acetaminophen biomarkers and asthma subgroups, adjusting for multiple confounders, including potential indications for maternal acetaminophen use such as maternal fever. RESULTS: The study included 142 children with asthma and at least 1 other allergic condition, 55 children with asthma but no other allergic condition, and 613 children free of asthma. Detection of acetaminophen in cord blood, reflecting maternal exposure to acetaminophen shortly before delivery, was associated with 3.73 times the odds of developing asthma without allergic comorbidities (95% CI: 1.79-7.80, P = .0004). In contrast, the detection of acetaminophen in cord blood was not associated with an elevated risk of asthma with allergic comorbidities. Analysis of acetaminophen glucuronide yielded consistent results. CONCLUSION: In a prospective birth cohort, cord blood acetaminophen biomarkers were associated with an increased risk of childhood asthma without allergic comorbidities, but were not associated with childhood asthma with allergic comorbidities.

14.
Am J Clin Nutr ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38428740

RESUMO

BACKGROUND: Distinct circulating bile acid (BA) subtypes may play roles in regulating lipid homeostasis and atherosclerosis. OBJECTIVES: We investigated whether changes in circulating BA subtypes induced by weight-loss dietary interventions were associated with improved lipid profiles and atherosclerotic cardiovascular disease (ASCVD) risk estimates. METHODS: This study included adults with overweight or obesity (n = 536) who participated in a randomized weight-loss dietary intervention trial. Circulating primary and secondary unconjugated BAs and their taurine-/glycine-conjugates were measured at baseline and 6 mo after the weight-loss diet intervention. The ASCVD risk estimates were calculated using the validated equations. RESULTS: At baseline, higher concentrations of specific BA subtypes were related to higher concentrations of atherogenic very low-density lipoprotein lipid subtypes and ASCVD risk estimates. Weight-loss diet-induced decreases in primary BAs were related to larger reductions in triglycerides and total cholesterol [every 1 standard deviation (SD) decrease of glycocholate, glycochenodeoxycholate, or taurochenodeoxycholate was related to ß (standard error) -3.3 (1.3), -3.4 (1.3), or -3.8 (1.3) mg/dL, respectively; PFDR < 0.05 for all]. Greater decreases in specific secondary BA subtypes were also associated with improved lipid metabolism at 6 mo; there was ß -4.0 (1.1) mg/dL per 1-SD decrease of glycoursodeoxycholate (PFDR =0.003) for changes in low-density lipoprotein cholesterol. We found significant interactions (P-interaction < 0.05) between dietary fat intake and changes in BA subtypes on changes in ASCVD risk estimates; decreases in primary and secondary BAs (such as conjugated cholate or deoxycholate) were significantly associated with improved ASCVD risk after consuming a high-fat diet, but not after consuming a low-fat diet. CONCLUSIONS: Decreases in distinct BA subtypes were associated with improved lipid profiles and ASCVD risk estimates, highlighting the importance of changes in circulating BA subtypes as significant factors linked to improved lipid metabolism and ASCVD risk estimates in response to weight-loss dietary interventions. Habitual dietary fat intake may modify the associations of changes in BAs with ASCVD risk. This trial was registered at clinicaltrials.gov as NCT00072995.

15.
Med ; 5(3): 224-238.e5, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38366602

RESUMO

BACKGROUND: A healthy lifestyle is associated with a lower premature mortality risk and with longer life expectancy. However, the metabolic pathways of a healthy lifestyle and how they relate to mortality and longevity are unclear. We aimed to identify and replicate a healthy lifestyle metabolomic signature and examine how it is related to total and cause-specific mortality risk and longevity. METHODS: In four large cohorts with 13,056 individuals and 28-year follow-up, we assessed five healthy lifestyle factors, used liquid chromatography mass spectrometry to profile plasma metabolites, and ascertained deaths with death certificates. The unique healthy lifestyle metabolomic signature was identified using an elastic regression. Multivariable Cox regressions were used to assess associations of the signature with mortality and longevity. FINDINGS: The identified healthy lifestyle metabolomic signature was reflective of lipid metabolism pathways. Shorter and more saturated triacylglycerol and diacylglycerol metabolite sets were inversely associated with the healthy lifestyle score, whereas cholesteryl ester and phosphatidylcholine plasmalogen sets were positively associated. Participants with a higher healthy lifestyle metabolomic signature had a 17% lower risk of all-cause mortality, 19% for cardiovascular disease mortality, and 17% for cancer mortality and were 25% more likely to reach longevity. The healthy lifestyle metabolomic signature explained 38% of the association between the self-reported healthy lifestyle score and total mortality risk and 49% of the association with longevity. CONCLUSIONS: This study identifies a metabolomic signature that measures adherence to a healthy lifestyle and shows prediction of total and cause-specific mortality and longevity. FUNDING: This work was funded by the NIH, CIHR, AHA, Novo Nordisk Foundation, and SciLifeLab.


Assuntos
Estilo de Vida Saudável , Longevidade , Humanos , Estudos Prospectivos , Fatores de Risco , Estudos de Coortes
16.
iScience ; 27(2): 108979, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38333717

RESUMO

A high glycemic index (HGI) diet induces hyperglycemia, a risk factor for diseases affecting multiple organ systems. Here, we evaluated tissue-specific adaptations in the liver and retina after feeding HGI diet to mice for 1 or 12 month. In the liver, genes associated with inflammation and fatty acid metabolism were altered within 1 month of HGI diet, whereas 12-month HGI diet-fed group showed dysregulated expression of cytochrome P450 genes and overexpression of lipogenic factors including Srebf1 and Elovl5. In contrast, retinal transcriptome exhibited HGI-related notable alterations in energy metabolism genes only after 12 months. Liver fatty acid profiles in HGI group revealed higher levels of monounsaturated and lower levels of saturated and polyunsaturated fatty acids. Additionally, HGI diet increased blood low-density lipoprotein, and diet-aging interactions affected expression of mitochondrial oxidative phosphorylation genes in the liver and disease-associated genes in retina. Thus, our findings provide new insights into retinal and hepatic adaptive mechanisms to dietary hyperglycemia.

17.
Cell Host Microbe ; 32(2): 209-226.e7, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38215740

RESUMO

Understanding the role of the microbiome in inflammatory diseases requires the identification of microbial effector molecules. We established an approach to link disease-associated microbes to microbial metabolites by integrating paired metagenomics, stool and plasma metabolomics, and culturomics. We identified host-microbial interactions correlated with disease activity, inflammation, and the clinical course of ulcerative colitis (UC) in the Predicting Response to Standardized Colitis Therapy (PROTECT) pediatric inception cohort. In severe disease, metabolite changes included increased dipeptides and tauro-conjugated bile acids (BAs) and decreased amino-acid-conjugated BAs in stool, whereas in plasma polyamines (N-acetylputrescine and N1-acetylspermidine) increased. Using patient samples and Veillonella parvula as a model, we uncovered nitrate- and lactate-dependent metabolic pathways, experimentally linking V. parvula expansion to immunomodulatory tryptophan metabolite production. Additionally, V. parvula metabolizes immunosuppressive thiopurine drugs through xdhA xanthine dehydrogenase, potentially impairing the therapeutic response. Our findings demonstrate that the microbiome contributes to disease-associated metabolite changes, underscoring the importance of these interactions in disease pathology and treatment.


Assuntos
Colite Ulcerativa , Microbioma Gastrointestinal , Humanos , Criança , Colite Ulcerativa/tratamento farmacológico , Interações entre Hospedeiro e Microrganismos , Microbioma Gastrointestinal/genética , Progressão da Doença , Genes Microbianos
18.
Cardiovasc Diabetol ; 23(1): 38, 2024 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245716

RESUMO

BACKGROUND: Legume consumption has been linked to a reduced risk of type 2 diabetes (T2D) and cardiovascular disease (CVD), while the potential association between plasma metabolites associated with legume consumption and the risk of cardiometabolic diseases has never been explored. Therefore, we aimed to identify a metabolite signature of legume consumption, and subsequently investigate its potential association with the incidence of T2D and CVD. METHODS: The current cross-sectional and longitudinal analysis was conducted in 1833 PREDIMED study participants (mean age 67 years, 57.6% women) with available baseline metabolomic data. A subset of these participants with 1-year follow-up metabolomics data (n = 1522) was used for internal validation. Plasma metabolites were assessed through liquid chromatography-tandem mass spectrometry. Cross-sectional associations between 382 different known metabolites and legume consumption were performed using elastic net regression. Associations between the identified metabolite profile and incident T2D and CVD were estimated using multivariable Cox regression models. RESULTS: Specific metabolic signatures of legume consumption were identified, these included amino acids, cortisol, and various classes of lipid metabolites including diacylglycerols, triacylglycerols, plasmalogens, sphingomyelins and other metabolites. Among these identified metabolites, 22 were negatively and 18 were positively associated with legume consumption. After adjustment for recognized risk factors and legume consumption, the identified legume metabolite profile was inversely associated with T2D incidence (hazard ratio (HR) per 1 SD: 0.75, 95% CI 0.61-0.94; p = 0.017), but not with CVD incidence risk (1.01, 95% CI 0.86-1.19; p = 0.817) over the follow-up period. CONCLUSIONS: This study identified a set of 40 metabolites associated with legume consumption and with a reduced risk of T2D development in a Mediterranean population at high risk of cardiovascular disease. TRIAL REGISTRATION: ISRCTN35739639.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Dieta Mediterrânea , Fabaceae , Humanos , Feminino , Idoso , Masculino , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/epidemiologia , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/prevenção & controle , Estudos Transversais , Fatores de Risco
19.
Diabetes Metab Res Rev ; 40(1): e3763, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38287718

RESUMO

BACKGROUND: Several metabolites are individually related to incident type 2 diabetes (T2D) risk. We prospectively evaluated a novel T2D-metabolite pattern with a risk of progression to T2D among high-risk women with a history of gestational diabetes mellitus (GDM). METHODS: The longitudinal Nurses' Health Study II cohort enroled 116,429 women in 1989 and collected blood samples from 1996 to 1999. We profiled plasma metabolites in 175 incident T2D cases and 175 age-matched controls, all with a history of GDM before the blood draw. We derived a metabolomics score from 21 metabolites previously associated with incident T2D in the published literature by scoring according to the participants' quintile (1-5 points) of each metabolite. We modelled the T2D metabolomics score categorically in quartiles and continuously per 1 standard deviation (SD) with the risk of incident T2D using conditional logistic regression models adjusting for body mass index at the blood draw, and other established T2D risk factors. RESULTS: The percentage of women progressing to T2D ranged from 10% in the bottom T2D metabolomics score quartile to 78% in the highest score quartile. Adjusting for established T2D risk factors, women in the highest quartile had more than a 20-fold greater diabetes risk than women in the lowest quartile (odds ratios [OR] = 23.1 [95% CI = 8.6, 62.1]; p for trend<0.001). The continuous T2D metabolomics score was strongly and positively associated with incident T2D (adjusted OR = 2.7 per SD [95% CI = 1.9, 3.7], p < 0.0001). CONCLUSIONS: A pattern of plasma metabolites among high-risk women is associated with a markedly elevated risk of progression to T2D later in life.


Assuntos
Diabetes Mellitus Tipo 2 , Diabetes Gestacional , Gravidez , Humanos , Feminino , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Gestacional/diagnóstico , Diabetes Gestacional/epidemiologia , Fatores de Risco , Metabolômica , Razão de Chances
20.
mBio ; 15(2): e0320823, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38236034

RESUMO

Mycobacterium tuberculosis (Mtb) can adopt a non-growing dormant state during infection that may be critical to both active and latent tuberculosis. During dormancy, Mtb is widely tolerant toward antibiotics, a significant obstacle in current anti-tubercular drug regimens, and retains the ability to persist in its environment. We aimed to identify novel mechanisms that permit Mtb to survive dormancy in an in vitro carbon starvation model using transposon insertion sequencing and gene expression analysis. We identified a previously uncharacterized component of the lipid transport machinery, omamC, which was upregulated and required for survival during carbon starvation. We show that OmamC plays a role both in increasing fatty acid stores during growth in rich media and enhancing fatty acid utilization during starvation. Besides its involvement in lipid metabolism, OmamC levels affected the expression of the anti-anti-sigma factor rv0516c and other genes to improve Mtb survival during carbon starvation and increase its tolerance toward rifampicin, a first-line drug effective against non-growing Mtb. Importantly, we show that Mtb can be eradicated during carbon starvation, in an OmamC-dependent manner, by inhibiting lipid metabolism with the lipase inhibitor tetrahydrolipstatin. This work casts new light into the survival processes of non-replicating, drug-tolerant Mtb by identifying new proteins involved in lipid metabolism required for the survival of dormant bacteria and exposing a potential vulnerability that could be exploited for antibiotic discovery.IMPORTANCETuberculosis is a global threat, with ~10 million yearly active cases. Many more people, however, live with "latent" infection, where Mycobacterium tuberculosis survives in a non-replicative form. When latent bacteria activate and regrow, they elicit immune responses and result in significant host damage. Replicating and non-growing bacilli can co-exist; however, non-growing bacteria are considerably less sensitive to antibiotics, thus complicating treatment by necessitating long treatment durations. Here, we sought to identify genes important for bacterial survival in this non-growing state using a carbon starvation model. We found that a previously uncharacterized gene, omamC, is involved in storing and utilizing fatty acids as bacteria transition between these two states. Importantly, inhibiting lipid metabolism using a lipase inhibitor eradicates non-growing bacteria. Thus, targeting lipid metabolism may be a viable strategy for treating the non-growing population in strategies to shorten treatment durations of tuberculosis.


Assuntos
Mycobacterium tuberculosis , Humanos , Mycobacterium tuberculosis/metabolismo , Ácidos Graxos/metabolismo , Antibacterianos/farmacologia , Carbono/metabolismo , Lipase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...